منابع مشابه
Bayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data
This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...
متن کاملHandling Missing Data by Maximum Likelihood
Multiple imputation is rapidly becoming a popular method for handling missing data, especially with easy-to-use software like PROC MI. In this paper, however, I argue that maximum likelihood is usually better than multiple imputation for several important reasons. I then demonstrate how maximum likelihood for missing data can readily be implemented with the following SAS procedures: MI, MIXED, ...
متن کاملLocal Maximum Likelihood Techniques with Categorical Data
In this paper we provide asymptotic theory of local maximum likelihood techniques for estimating a regression model where some regressors are discrete. Our methodology and theory are particularly useful for models that give us a likelihood of the unknown functions we can use to identify and estimate the underlying model. This is the case when the conditional density of the variable of interest,...
متن کاملMaximum Likelihood Estimation for Lossy Data Compression∗
In lossless data compression, given a sequence of observations (Xn)n≥1 and a family of probability distributions {Qθ}θ∈Θ, the estimators (θ̃n)n≥1 obtained by minimizing the ideal Shannon code-lengths over the family {Qθ}θ∈Θ, θ̃n := arg min θ∈Θ [ − logQθ(X 1 ) ] , whereXn 1 := (X1, X2, . . . , Xn), coincide with the classical maximum-likelihood estimators (MLEs). In the corresponding lossy compres...
متن کاملEigenstructure of Maximum Likelihood from Counting Data
The MLE (Maximum Likelihood Estimate) for a multinomial model is proportional to the data. We call such estimate an eigenestimate and the relationship of it to the data as the eigenstructure. When the multinomial model is generalized to deal with data arise from incomplete or censored categorical counts, we would naturally look for this eigenstructure between MLE and data. The paper finds the a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2017
ISSN: 0747-7171
DOI: 10.1016/j.jsc.2016.08.007